

Solid State Devices, Inc.

14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

DESIGNER'S DATA SHEET

Part Number / Ordering Information 1/ SFF440 ____ L Screening^{2/}

__ = Not Screened TX = TX Level TXV = TXV Level S = S Level

Package S1 = SMD1

SFF440S1

8 AMP, 500 Volts, 0.85 Ω N-Channel Power MOSFET

Features:

- Rugged Construction with Poly Silicon Gate
- Low RDS(on) and High Transconductance
- Excellent High Temperature Stability
- Very Fast Switching Speed
- Fast Recovery and Superior dv/dt Performance
- Increased Reverse Energy Capability
- Low Input and Transfer Capacitance for Easy Paralleling
- · Hermetically Sealed Surface Mount Package
- TX, TXV, S-Level Screening Available^{2/}
- Replacement for IRF440 Types

Maximum Ratings ^{3/}		Symbol	Value	Unit
Drain to Source Voltage		V _{DS}	500	V
Gate to Source Voltage		V_{GS}	±20	V
Continuous Drain Current	@ 25°C @ 100°C	I _D	8 5	Α
Operating & Storage Temperature		T _{OP} & T _{STG}	-55 to +150	°C
Thermal Resistance (Junction to Case)		R _θ Jc	1.7	°C/W
Total Power Dissipation	@ T _C = 25°C @ T _C = 55°C	P _D	74 55	w
Single Pulse Avalanche Energy Repetitive Avalanche Energy		Eas Ear	3.6	mJ

NOTES: *Pulsed per MIL-STD-750.

- 1/ For ordering information, price, and availability contact factory.
- 2/ Screening based on MIL-PRF-19500. Screening flows available on request
- 3/ Unless otherwise specified, all electrical characteristics @ 25°C.

SMD1 (S1)

NOTE: All specifications are subject to change without notification. SCD's for these devices should be reviewed by SSDI prior to release.

DATA SHEET #: F00083D

DOCX

Solid State Devices, Inc.

14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

SFF440S1

Electrical Characteristics ^{3/}		Symbol	Min	Тур	Max	Unit
Drain to Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	BV _{DSS}	500			V
Temperature Coefficient of Breakdown Voltage		$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$		0.78	1	v/°C
Drain to Source On State Resistance	$ V_{GS} = 10 \text{ V}, I_D = 5 \text{ A} $	R _{DS(on)}	_	0.70	0.85 0.98	Ω
Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	$V_{GS(th)}$	2.0		4.0	V
Forward Transconductance	$V_{DS} \ge 10 \text{ V}, I_{DS} = 5 \text{ A}$	\mathbf{g}_{fs}	4.7	7.4		S(℧)
	$_{\rm S}$ = 80% rated voltage, $V_{\rm GS}$ = 0 V rated $V_{\rm DS}$, $V_{\rm GS}$ = 0 V, $T_{\rm A}$ = 125°C	I _{DSS}	_	_	25 250	μΑ
Gate to Source Leakage Forward Gate to Source Leakage Reverse	At rated V _{GS}	I _{GSS}	_	_	100 -100	nA
Total Gate Charge Gate to Source Charge Gate to Drain Charge	$V_{GS} = 10 \text{ V}$ 50% rated V_{DS} $I_D = 8 \text{ A}$	$egin{array}{c} oldsymbol{Q}_{g} \ oldsymbol{Q}_{gd} \end{array}$	27.3 2 11	34 6 17	68.5 12.5 42	nC
Turn on Delay Time Rise Time Turn off Delay Time Fall Time	V_{DD} = 50% rated V_{DS} I_D = 8 A R_G = 9.1 Ω	$egin{array}{c} \mathbf{t_{d(on)}} \ \mathbf{t_{r}} \ \mathbf{t_{d(off)}} \ \mathbf{t_{f}} \end{array}$	_ _ _	22 27 42 15	45 49 72 51	nsec
Diode Forward Voltage Is	$_{\text{I}}$ = rated I _D , V _{GS} = 0 V, T _J = 25°C	V _{SD}			1.5	V
Diode Reverse Recovery Time Reverse Recovery Charge	$T_J = 25$ °C, $I_F = \text{rated } I_D$, $di/dt = 100 \text{ A/}\mu\text{sec}$	t _{rr} Q _{rr}		380 3	700 8.9	nsec µC
Input Capacitance Output Capacitance Reverse Transfer Capacitance	$\begin{array}{c} V_{GS}=0 \ V \\ V_{DS}=25 \ V \\ f=1 \ MHz \end{array}$	C _{iss} C _{oss} C _{rss}		1300 310 120		pF

PIN ASSIGNMENT (Standard)							
Package	Drain	Source	Gate				
SMD1	Pin 1	Pin 2	Pin 3				

NOTES:

- *Pulsed per MIL-STD-750.
- 1/ For ordering information, price, and availability contact factory.
- 2/ Screening based on MIL-PRF-19500. Screening flows available on request.
- 3/ Unless otherwise specified, all electrical characteristics @ 25°C.