

Solid State Devices, Inc.

14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

DESIGNER'S DATA SHEET

Part Number / Ordering Information ^{1/} SFF450 ____

Screening²/
__ = Not Screened
TX = TX Level
TXV = TXV Level
S = S Level

Package S1 = SMD1

SFF450S1

12 AMP, 500 Volts, 0.40 Ω N-Channel Power MOSFET

Features:

- Rugged Construction with Poly Silicon Gate
- Low RDS(on) and High Transconductance
- Excellent High Temperature Stability
- Very Fast Switching Speed
- Fast Recovery and Superior dv/dt Performance
- · Increased Reverse Energy Capability
- Low Input and Transfer Capacitance for Easy Paralleling
- Hermetically Sealed Surface Mount Package
- TX, TXV, S-Level Screening Available^{2/}
- Replacement for IRF450 Types

Maximum Ratings ³ /		Symbol	Value	Unit
Drain to Source Voltage		V _{DS}	500	V
Gate to Source Voltage		V _{GS}	±20	V
Continuous Drain Current	@ 25°C @ 100°C	Ι _D	12 7.75	Α
Operating & Storage Temperature		T _{OP} & T _{STG}	-55 to +150	°C
Thermal Resistance (Junction to Case)		R _θ Jc	0.7	°C/W
Total Power Dissipation	@ T _C = 25°C @ T _C = 55°C	PD	178.5 136	w
Single Pulse Avalanche Energy Repetitive Avalanche Energy		Eas Ear	8 -	mJ

NOTES: *Pulsed per MIL-STD-750.

- 1/ For ordering information, price, and availability contact factory.
- 2/ Screening based on MIL-PRF-19500. Screening flows available on request.
- 3/ Unless otherwise specified, all electrical characteristics @ 25°C.

SMD1 (S1)

NOTE: All specifications are subject to change without notification. SCD's for these devices should be reviewed by SSDI prior to release.

DATA SHEET #: F00095E

DOCX

Solid State Devices, Inc.

14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

SFF450S1

Electrical Characteristics ³		Symbol	Min	Тур	Max	Unit
Drain to Source Breakdown Volta	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	BV _{DSS}	500		_	V
Temperature Coefficient of Breakdown Voltage		$\frac{\Delta B V_{DSS}}{\Delta T_{J}}$		0.78	1	V/°C
Drain to Source On State Resistance	$V_{GS} = 10 \text{ V}, I_D = 7.75 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}$	R _{DS(on)}	_	0.35	0.40 0.50	Ω
Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	$V_{GS(th)}$	2.0		4.0	V
Forward Transconductance	$V_{DS} \ge 10 \text{ V}, I_{DS} = 7.75 \text{ A}$	g fs	5.5	13		S(℧)
Zero Gate Voltage Drain Current V _{DS} = 80°	V_{DS} = 80% rated V_{DS} , V_{GS} = 0 V % rated V_{DS} , V_{GS} = 0 V, T_A = 125°C	I _{DSS}	_	_	25 250	μΑ
Gate to Source Leakage Forward Gate to Source Leakage Reverse	At rated V _{GS}	I _{GSS}	_	_	100 -100	nA
Total Gate Charge Gate to Source Charge Gate to Drain Charge	V_{GS} = 10 V 50% rated V_{DS} Rated I_D	Q _g Q _{gs} Q _{gd}	55 5 27	83 11 42	120 19 70	nC
Turn on Delay Time Rise Time Turn off Delay Time Fall Time	V_{DD} = 50% rated V_{DS} 50% rated I_{D} R _G = 6.2 Ω	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	_ _ _	26 16 55 15	35 190 170 130	nsec
Diode Forward Voltage	I_S = rated I_D , V_{GS} = 0 V, T_J = 25°C	V _{SD}		0.9	1.7	V
Diode Reverse Recovery Time Reverse Recovery Charge	$T_J = 25$ °C, $I_F = \text{rated } I_D$, $di/dt = 100 \text{ A/}\mu\text{sec}$	t _{rr} Q _{rr}	_	500 6.7	1600 14	nsec µC
Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{GS} = 0 \text{ V}$ $V_{DS} = 25 \text{ V}$ $f = 1 \text{ MHz}$	C _{iss} C _{oss} C _{rss}		2700 600 240	111	pF

PIN ASSIGNMENT (Standard)							
Package	Drain	Source	Gate				
SMD1	Pin 1	Pin 2	Pin 3				

NOTES:

- *Pulsed per MIL-STD-750.
- 1/ For ordering information, price, and availability contact
- 2/ Screening based on MIL-PRF-19500. Screening flows available on request.
- 3/ Unless otherwise specified, all electrical characteristics @ 25°C.