

### Solid State Devices, Inc.

14701 Firestone Blvd \* La Mirada, Ca 90638 Phone: (562) 404-4474 \* Fax: (562) 404-1773 ssdi@ssdi-power.com \* www.ssdi-power.com

### **DESIGNER'S DATA SHEET**

## Part Number / Ordering Information <sup>1</sup> SFFC50

Screening<sup>2/</sup>
\_\_ = Not Screened
TX = TX Level
TXV = TXV Level
S = S Level

Package S1 = SMD1

## SFFC50S1

# 11 AMP, 600 Volts, 0.6 $\Omega$ N-Channel Power MOSFET

#### Features:

- Rugged Construction with Poly Silicon Gate
- Low RDS(on) and High Transconductance
- Excellent High Temperature Stability
- Very Fast Switching Speed
- Fast Recovery and Superior dv/dt Performance
- · Increased Reverse Energy Capability
- Low Input and Transfer Capacitance for Easy Paralleling
- Hermetically Sealed Surface Mount Package
- Low Inductance Package
- TX, TXV, S-Level Screening Available<sup>2/</sup>

| Maximum Ratings <sup>3/</sup>            |                                                     | Symbol                             | Value       | Unit |
|------------------------------------------|-----------------------------------------------------|------------------------------------|-------------|------|
| Drain to Source Voltage                  |                                                     | V <sub>DS</sub>                    | 600         | V    |
| Gate to Source Voltage                   |                                                     | V <sub>GS</sub>                    | ±20         | V    |
| Continuous Drain Current                 | @ T <sub>C</sub> = 25°C<br>@ T <sub>C</sub> = 100°C | I <sub>D1</sub><br>I <sub>D2</sub> | 11<br>7     | A    |
| Operating & Storage Temperature          |                                                     | T <sub>OP</sub> & T <sub>STG</sub> | -55 to +150 | °C   |
| Thermal Resistance<br>(Junction to Case) |                                                     | R <sub>eJC</sub>                   | 1.25        | °C/W |
| Total Power Dissipation                  | @ T <sub>C</sub> = 25°C<br>@ T <sub>C</sub> = 55°C  | P <sub>D</sub>                     | 100<br>76   | w    |
| Single Pulse Avalanche Energy            |                                                     | Eas                                | 920         | mJ   |
| Repetitive Avalanche Energy              |                                                     | E <sub>AR</sub>                    | 18          | mJ   |

NOTES: \*Pulsed per MIL-STD-750.

- 1/ For ordering information, price, and availability contact factory.
- 2/ Screening based on MIL-PRF-19500. Screening flows available on request.
- 3/ Unless otherwise specified, all electrical characteristics @ 25°C.

SMD1 (S1)



**NOTE:** All specifications are subject to change without notification. SCD's for these devices should be reviewed by SSDI prior to release.

DATA SHEET #: F00297B

**DOCX** 



Solid State Devices, Inc.

14701 Firestone Blvd \* La Mirada, Ca 90638 Phone: (562) 404-4474 \* Fax: (562) 404-1773 ssdi@ssdi-power.com \* www.ssdi-power.com

## **SFFC50S1**

| <u> </u>                                                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                      |                       |            |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------|-----------------------|------------|
| Electrical Characteristics3/                                            |                                                                                           | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Min | Тур                  | Max                   | Unit       |
| Drain to Source Breakdown Voltage                                       | $V_{GS}$ = 0 V, $I_D$ = 250 $\mu A$                                                       | BV <sub>DSS</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 600 | _                    |                       | V          |
| Temperature Coefficient of Breakdown Voltage                            |                                                                                           | ΔBV <sub>DSS</sub> ΔT <sub>J</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 780                  |                       | mV/°C      |
| Drain to Source On State Resistance                                     | $V_{GS} = 10 \text{ V}, I_D = 6 \text{ A}$<br>$V_{GS} = 10 \text{ V}, I_D = 11 \text{ A}$ | R <sub>DS(on)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _   | 0.5<br>0.5           | 0.60<br>0.65          | Ω          |
| Gate Threshold Voltage                                                  | $V_{DS}=V_{GS},I_D=250\;\mu A$                                                            | $V_{GS(th)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0 |                      | 4.0                   | V          |
| Forward Transconductance                                                | V <sub>DS</sub> = V <sub>GS</sub> , I <sub>DS</sub> = 6 A                                 | g <sub>fs</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.7 | 13                   |                       | S(O)       |
|                                                                         | = 80% rated voltage, $V_{GS}$ = 0 V ted $V_{DS}$ , $V_{GS}$ = 0 V, $T_A$ = 125°C          | I <sub>DSS</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _   | _                    | 100<br>500            | μΑ         |
| Gate to Source Leakage Forward Gate to Source Leakage Reverse           | At rated V <sub>GS</sub>                                                                  | I <sub>GSS</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | _                    | 100<br>-100           | nA         |
| Total Gate Charge<br>Gate to Source Charge<br>Gate to Drain Charge      | $V_{GS}$ = 10 V $V_{DS}$ = 360 V Rated I <sub>D</sub>                                     | $oldsymbol{Q_{g}}{oldsymbol{Q_{gs}}} \ oldsymbol{Q_{gd}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 100<br>11<br>56      | 140<br>20<br>69       | nC         |
| Turn on Delay Time<br>Rise Time<br>Turn off Delay Time<br>Fall Time     | $V_{DD}$ = 50% rated VDS Rated $I_{D}$ R <sub>G</sub> = 6.2 $\Omega$                      | $egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$ |     | 21<br>10<br>65<br>18 | 30<br>20<br>100<br>25 | nsec       |
| Diode Forward Voltage I <sub>S</sub> =                                  | = rated I <sub>D</sub> , V <sub>GS</sub> = 0 V, T <sub>J</sub> = 25°C                     | V <sub>SD</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | _                    | 1.4                   | V          |
| Diode Reverse Recovery Time<br>Reverse Recovery Charge                  | $T_J = 25$ °C, $I_F = \text{rated } I_D$ , $di/dt = 100 \text{ A/}\mu\text{sec}$          | t <sub>rr</sub><br>Q <sub>rr</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _   | 450<br>3.9           | 830<br>—              | nsec<br>µC |
| Input Capacitance<br>Output Capacitance<br>Reverse Transfer Capacitance | $V_{GS} = 0 \text{ V}$ $V_{DS} = 25 \text{ V}$ $f = 1 \text{ MHz}$                        | C <sub>iss</sub><br>C <sub>oss</sub><br>C <sub>rss</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 2500<br>350<br>55    |                       | pF         |



| PIN ASSIGNMENT (Standard) |       |        |       |  |  |
|---------------------------|-------|--------|-------|--|--|
| Package                   | Drain | Source | Gate  |  |  |
| SMD1                      | Pin 1 | Pin 2  | Pin 3 |  |  |

### NOTES:

- \*Pulsed per MIL-STD-750.
- 1/ For ordering information, price, and availability contact
- 2/ Screening based on MIL-PRF-19500. Screening flows available on request.
- 3/ Unless otherwise specified, all electrical characteristics @ 25°C.

NOTE: All specifications are subject to change without notification. SCD's for these devices should be reviewed by SSDI prior to release.

DATA SHEET #: F00297B

**DOCX**